The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order
نویسندگان
چکیده
A necessary and sufficient condition is given for quasi-homogeneous polynomial Hamiltonian systems having a center. Then it shown that there exists bound on the number of limit cycles bifurcating from period annulus at any order Melnikov functions; explicit expression this in terms (n,k,s1,s2), where n degree perturbation polynomials, k first nonzero higher function, (s1,s2) weight exponent with This extends some known results solves Arnol'd-Hilbert's 16th problem perturbations homogeneous or systems.
منابع مشابه
Limit Cycles Bifurcating from Planar Polynomial Quasi–homogeneous Centers
In this paper we find an upper bound for the maximum number of limit cycles bifurcating from the periodic orbits of any planar polynomial quasi-homogeneous center, which can be obtained using first order averaging method. This result improves the upper bounds given in [7].
متن کاملLimit cycles bifurcating from the periodic annulus of the weight-homogeneous polynomial centers of weight-degree 2
We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of a family of cubic polynomial differential centers when it is perturbed inside the class of all cubic polynomial differential systems. The family considered is the unique family of weight–homogeneous polynomial differential systems of weight–degree 2 with a center.
متن کاملthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اولBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملAn Improved Lower Bound on the Number of Limit Cycles Bifurcating from a Hamiltonian Planar Vector Field of Degree 7
The limit cycle bifurcations of a Z2 equivariant planar Hamiltonian vector field of degree 7 under Z2 equivariant degree 7 perturbation is studied. We prove that the given system can have at least 53 limit cycles. This is an improved lower bound for the weak formulation of Hilbert’s 16th problem for degree 7, i.e., on the possible number of limit cycles that can bifurcate from a degree 7 planar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2020.12.015